In this paper, sufficient conditions are derived for asymptotic stability and uniformly asymptotic stability for impulsive functional differential equation using piecewise continuous differential equation.
Keywords: Stability, Impulsive Functional Differential Equation, Liapunov functional

Sanjay K. Srivastava

Associate Professor, Deptt. of Applied Sciences, Beant College of Engineering and Technology,
Gurdaspur, Punjab

Neeti Bhandari

Research Scholar, Deptt. of Applied Sciences, Punjab Technical University, Jalandhar, Punjab.

Neha Wadhwa

Assistant Professor, Deptt. of Applied Sciences, Amritsar College of Engineering and Technology,
Amritsar,

Introduction

Consider the impulsive functional differential equation

$$
\left\{\begin{array}{cc}
x^{\prime}(t)=f\left(t, x_{t}\right), & t \neq t_{k} t \geq t_{0} \\
\Delta x=I_{k}\left(t,\left(x_{t}^{-}\right)\right), & t=t_{k}, k \in Z^{+} \tag{1}
\end{array}\right.
$$

Where $\quad f: J \times P C \rightarrow R^{n}, \Delta x=x(t)-x\left(t^{-}\right), t_{0}<t_{1}<\cdots t_{k}<t_{k+1}<$ \cdots, With $t_{k} \rightarrow \infty$ as $k \rightarrow \infty \quad$ and $\quad I_{k}: J \times S(\rho) \rightarrow R^{n}$, where $J=\left[t_{0}, \infty\right)$, $S(\rho)=\{x \in R:|x|<\rho\} . P C=P C\left([-\tau, 0], R^{n}\right)$ denotes the space of piecewise right continuous functions $\varphi:[-\tau, 0] \rightarrow R^{n}$ with sup-norm $\|\varphi\|_{\infty}=\sup _{-\tau \leq s \leq 0}|\varphi(s)|$ and the norm $\|\varphi\|_{2}=\left(\int_{-\tau}^{0}|\varphi(s)|^{2} d s\right)^{1 / 2,}$ where τ is a positive constant, $\|$.$\| is a norm in R^{n} . x_{t} \in P C$ is defined by $x_{t}(s)=$ $x(t+s)$ for $-\tau \leq s \leq 0 . x^{\prime}(t)$ denotes the right-hand derivative of $x(t) . Z^{+}$ is the set of all positive integers,
Let $f(t, 0)=0$ and $J(0)=0$, then $x(t)=0$ is the zero solution of (1). Set $P C(\rho)=\left\{\varphi \in P C:\|\varphi\|_{\infty}<\rho\right\}, \forall \rho>0$.

Definition 1.1

Let σ be the initial time, $\forall \sigma \in R$, the zero solution of (1) is said to be
a) stable if, for each $\sigma \geq t_{0}$ and $\varepsilon>0$, there is a $\delta=\delta(\sigma, \varepsilon)>0$ such that, for $\varphi \in P C(\delta)$, a solution $x(t, \sigma, \varphi)$ satisfies $|x(t, \sigma, \varphi)|<\varepsilon$ for $t \geq t_{0}$.
b) uniformly stable if it is stable and δ in the definition of stability is independent of σ
c) asymptotically stable if it is stable and, for each $t_{0} \in R_{+}$, there is an $\eta=\eta\left(t_{0}\right)>0$ such that, for $\varphi \in P C(\eta), x(t, \sigma, \varphi) \rightarrow 0$ as $t \rightarrow \infty$
d) uniformly asymptotically stable if it is uniformly stable and there is an $\eta>0$ and, for each $\varepsilon>0$, a $T=T(\varepsilon)>0$ such that, for $\varphi \in$ $P C(\eta),|x(t, \sigma, \varphi)|<\varepsilon$ for $t \geq t_{0}+T$

Definition 1.2

A functional $V(t, \varphi): J \times P C(\rho) \rightarrow R_{+}$belong to class $v_{o}($.$) (a set$ of Liapunov like functional) if
a) V is continuous on $\left[t_{k-1}, t_{k}\right) \times P C(\rho)$ for each $k \in Z_{+}$, and for all $\varphi \in P C(\rho)$ and $k \in Z_{+}$, the limit $\lim _{(t, \varphi) \rightarrow\left(t_{k}{ }^{-}, \varphi\right)} V(t, \varphi)=V\left(t_{k}{ }^{-}, \varphi\right)$ exists.
b) V is locally Lipchitzian in φ in each set in $P C(\rho)$ and $V(t, 0)=0$ The set \Re is defined by $\Re=\left\{W \in C\left(R_{+}, R_{+}\right)\right.$: strictly increasing and $W(0)=0$
Main Results Theorem 1

Assume that there exist $V_{1}, V_{2} \in v_{0}(),. W_{1}, W_{2}, W_{3}, W_{4} \in \Re$ such that
I. $W_{1}(|\varphi(0)|) \leq V(t, \varphi) \leq W_{2}(|\varphi(0)|)$, where $V(t, \varphi)=V_{1}(t, \varphi)+V_{2}(t, \varphi)$
II. $V\left(t_{k}, x+I_{k}\left(t_{k}, x\right)\right)-V\left(t_{k}^{-}, x\right) \leq 0$
III. $a V_{1}^{\prime}\left(t, x_{t}\right)+b V_{2}^{\prime}\left(t, x_{t}\right) \leq-\lambda(t) W_{3}(\inf \{|x(s)|: t-h \leq s \leq t\})$
IV. $p V_{1}^{\prime}\left(t, x_{t}\right)+q V_{2}^{\prime}\left(t, x_{t}\right) \leq 0$
where $a^{2}+b^{2} \neq 0, p^{2}+q^{2} \neq 0$ and $\int_{0}^{\infty} \lambda(s) d s=\infty$
(A) Suppose further that there is a $\mu=\mu(\gamma)>0$ for each $0<\gamma<$ H_{1} such that

$$
\begin{align*}
& p V_{1}^{\prime}\left(t, x_{t}\right)+q V_{2}^{\prime}\left(t, x_{t}\right) \leq-\mu V_{1}^{\prime}\left(t, x_{t}\right) \tag{2}\\
& \quad \text { if }|x(t)| \geq \gamma . \text { If either }(i) a>0, b>0 \text { or (ii) } p \geq 0, q
\end{align*}
$$

>0 hold, then the zero solution of (1)is uniformly and asymptotically stable.

E: ISSN No. 2349-9443
(B) The same is concluded if

$$
p V_{1}^{\prime}\left(t, x_{t}\right)+q V_{2}^{\prime}\left(t, x_{t}\right) \leq \mu V_{1}^{\prime}\left(t, x_{t}\right)
$$

holds in place of (2) and if either (i) $a>0, b$

$$
>0 \text { or }(i i) p>0, q>0
$$

Proof

We first prove the uniform stability. For given $\varepsilon>0$,we may choose a $\delta=\delta(\varepsilon)>0$ such that $W_{2}(\delta)<$ $W_{1}(\varepsilon)$. For any
$\sigma \geq t_{0}$ and $\varphi \in P C_{\delta}$, let $x(t, \sigma, \varphi)$ be the solution of (1). We will prove that

$$
|x(t, \sigma, \varphi)| \leq \varepsilon, \quad t \geq \sigma
$$

Let $\quad x(t)=x(t, \sigma, \varphi)$ and $V_{1}(t)=V_{1}\left(t, x_{t}\right), V_{2}(t)=$ $V_{2}\left(t, x_{t}\right)$ and $V(t)=V\left(t, x_{t}\right)$.
Then by assumption (iv),

$$
V^{\prime}\left(t, x_{t}\right) \leq 0, \quad \sigma \leq t_{k-1} \leq t<t_{k}, \quad k \in Z^{+}
$$

and so $\mathrm{V}(\mathrm{t})$ is non increasing on the interval of the form $\left[t_{k-1}, t_{k}\right)$. From condition (ii)

$$
\begin{aligned}
& V\left(t_{k}\right)-V\left(t_{k}^{-}\right)=V\left(t_{k}, x\left(t_{k}^{-}\right)+I_{k}\left(t_{k}, x\left(t_{k}^{-}\right)\right)\right)- \\
& V\left(t_{k}^{-}, x\left(t_{k}^{-}\right)\right) \leq 0 \\
& \text { Thus } V(\mathrm{t}) \text { is non increasing on }[\sigma, \infty) . \text { We have } \\
& W_{1}(|x(t)|) \leq V(t) \leq V(\sigma) \leq W_{2}(\sigma)<W_{1}(\varepsilon) \\
& t \geq \sigma
\end{aligned}
$$

This implies with the monotonicity of $\mathrm{W}_{1},|\mathrm{x}(\mathrm{t})|<\varepsilon$ for $t \geq \sigma$ and so that the zero solution of (1) is uniformly stable.
To show asymptotic stability, for a given $t_{0} \in R_{+}$and a fixed $0<\mathrm{H}_{2}<\mathrm{H}_{1}$, take $\eta=\eta\left(\mathrm{t}_{0}\right)=\delta\left(\mathrm{t}_{0}, \mathrm{H}_{2}\right)>0$, where δ is that in the definition of stability and for a given $\varphi \in \operatorname{PC}(\eta)$, let $x(t)=x(t, \sigma, \varphi)$ be a solution of (1). Suppose for contradiction that $x(t) \nrightarrow 0$ as $t \rightarrow \infty$. Then there is a sequence $\left\{\mathrm{T}_{\mathrm{i}}\right\}$ and an $\varepsilon_{0}>0$ with $\mathrm{T}_{\mathrm{i}} \rightarrow \infty$ and $\left|\mathrm{x}\left(\mathrm{T}_{\mathrm{i}}\right)\right|>\varepsilon_{0}$. Define $\varepsilon_{2}=\mathrm{W}_{2}^{-1}\left(\frac{\mathrm{~W}_{1}\left(\varepsilon_{0}\right)}{2}\right)$ then there is a sequence $\left\{s_{i}\right\}$ with $s_{i} \rightarrow \infty$ and $\left|x\left(s_{i}\right)\right|<\varepsilon_{2}$. Otherwise there is an $S \geq t_{0}$ such that
$|x(t)| \geq \varepsilon_{2}$ for $t \geq S$ and
$\mathrm{av}_{1}(\mathrm{t})+\mathrm{bv}_{2}(\mathrm{t}) \leq$
$\mathrm{av}_{1}(\mathrm{~S}+\mathrm{h})+\mathrm{bv}_{2}(\mathrm{~S}+\mathrm{h})-\int_{\mathrm{S}+\mathrm{h}}^{\mathrm{t}} \lambda(\mathrm{s}) \mathrm{W}_{4}(\inf \{|\mathrm{x}(\sigma)|: \mathrm{s}-\mathrm{h} \leq$ $\sigma \leq s d s+$
$\mathrm{S}+\mathrm{h} \leq \mathrm{tk} \leq \mathrm{t}[\mathrm{Vtk}-\mathrm{S}+\mathrm{h} \leq \mathrm{tk} \leq \mathrm{t}[\mathrm{Vtk}-\mathrm{Vtk}-)]$

$$
\leq \mathrm{av}_{1}(\mathrm{~S}+\mathrm{h})+\mathrm{bv}_{2}(\mathrm{~S}+\mathrm{h})-\mathrm{W}_{4}\left(\varepsilon_{2}\right) \int_{\mathrm{S}}^{\mathrm{t}} \lambda(\mathrm{~s}) \mathrm{ds} \rightarrow-\infty
$$

as $t \rightarrow \infty$, which contradicts either $\operatorname{av}_{1}(t)+\mathrm{bv}_{2}(\mathrm{t}) \geq 0$ if (i) holds or

$$
\mathrm{av}_{1}(\mathrm{t})+\mathrm{bv}_{2}(\mathrm{t}) \geq-|\mathrm{a}| \mathrm{W}_{2}\left(\mathrm{H}_{2}\right)-|\mathrm{b}|\left(\mathrm{pv}_{1}\left(\mathrm{t}_{0}\right)+\right.
$$

$\left.\mathrm{qV}_{2}\left(\mathrm{t}_{0}\right)\right) / \mathrm{q}$
if (ii) holds.
In Case (A), we may assume $\mathrm{T}_{\mathrm{i}-1}<\mathrm{s}_{\mathrm{i}}<\mathrm{T}_{\mathrm{i}}$ by choosing and renumbering if necessary. Then we can take a sequence $\left\{\mathrm{t}_{\mathrm{i}}\right\}$ such that $\mathrm{s}_{\mathrm{i}}<\mathrm{t}_{\mathrm{i}}<\mathrm{T}_{\mathrm{i}},\left|\mathrm{x}\left(\mathrm{t}_{\mathrm{i}}\right)\right|=\varepsilon_{2}$ and $|\mathrm{x}(\mathrm{t})|>\varepsilon_{2}$ for $\mathrm{t}_{\mathrm{i}}<\mathrm{t} \leq \mathrm{T}_{\mathrm{i}}$.
Then $\mathrm{pv}_{1}\left(\mathrm{~T}_{\mathrm{i}}\right)+\mathrm{qv}_{2}\left(\mathrm{~T}_{\mathrm{i}}\right)-\left(\mathrm{pv}_{1}\left(\mathrm{~T}_{\mathrm{i}-1}\right)+\mathrm{qv}_{2}\left(\mathrm{~T}_{\mathrm{i}-1}\right)\right)$

$$
\leq \mathrm{pv}_{1}\left(\mathrm{~T}_{\mathrm{i}}\right)+\mathrm{qv}_{2}\left(\mathrm{~T}_{\mathrm{i}}\right)-\left(\mathrm{p} \mathrm{v}_{1}\left(\mathrm{t}_{\mathrm{i}}\right)+\mathrm{qv}_{2}\left(\mathrm{t}_{\mathrm{i}}\right)\right)
$$

$$
\begin{aligned}
& +\sum_{\mathrm{t}_{\mathrm{i}} \leq \mathrm{t}_{\mathrm{k}} \leq \mathrm{T}_{\mathrm{i}}}\left[\mathrm{~V}\left(\mathrm{t}_{\mathrm{k}}\right)-\mathrm{V}\left(\mathrm{t}_{\mathrm{k}}^{-}\right)\right] \\
& \leq-\mu\left(\varepsilon_{2}\right)\left(\mathrm{v}_{1}\left(\mathrm{~T}_{\mathrm{i}}\right)-\mathrm{v}_{1}\left(\mathrm{t}_{\mathrm{i}}\right)\right) \\
& \leq-\mu\left(\varepsilon_{2}\right) \mathrm{W}_{1}\left(\varepsilon_{0}\right) / 2
\end{aligned}
$$

and a contradiction follows from

Asian Resonance

$p v_{1}\left(T_{n}\right)+q v_{2}\left(T_{n}\right)$
$=p v_{1}\left(T_{1}\right)+q v_{2}\left(T_{1}\right)$
$+\sum_{i=2}^{n}\left[p v_{1}\left(T_{i}\right)+q v_{2}\left(T_{i}\right)\right.$
$-\left(p v_{1}\left(T_{i-1}\right)\right.$
$+$
$+\sum_{T_{i-1} \leq t_{k} \leq T_{i}}\left[V\left(t_{k}\right)-V\left(t_{k}{ }^{-}\right)\right]$
$\leq p v_{1}\left(T_{1}\right)+q v_{2}\left(T_{1}\right)-\frac{(n-1) \mu\left(\varepsilon_{2}\right) W_{1}\left(\varepsilon_{0}\right)}{2} \rightarrow-\infty$
as $n \rightarrow \infty$
In Case (B), we may assume $s_{i-1}<T_{i}<s_{i}$ and take $\left\{t_{i}\right\}$ with $T_{i}<t_{i}<s_{i},\left|x\left(t_{i}\right)\right|=\varepsilon_{2}$ and $|x(t)|>\varepsilon_{2}$ for $T_{i} \leq t<t_{i}$ so that
$p v_{1}\left(t_{i}\right)+q v_{2}\left(t_{i}\right)-\left(p v_{1}\left(t_{i-1}\right)+q v_{2}\left(t_{i-1}\right)\right)$

$$
\begin{aligned}
\leq p v_{1}\left(t_{i}\right)+q v_{2}\left(t_{i}\right) & -\left(p v_{1}\left(T_{i}\right)+q v_{2}\left(T_{i}\right)\right) \\
& +\sum_{T_{i} \leq t_{k} \leq t_{i}}\left[V\left(t_{k}\right)-V\left(t_{k}^{-}\right)\right]
\end{aligned}
$$

$$
\leq \mu\left(\varepsilon_{2}\right)\left(v_{1}\left(t_{i}\right)-v_{1}\left(T_{i}\right)\right)
$$

$$
\leq-\mu\left(\varepsilon_{2}\right) W_{1}\left(\varepsilon_{0}\right) / 2
$$

This implies a contradiction by the same argument as in case (A)
Therefore, $x(t) \rightarrow 0$ as $t \rightarrow \infty$. The proof is complete.

Theorem 2.

Assume that there exist $V_{1}, V_{2} \in v_{0}($.$) and$
$W_{1}, W_{2}, W_{3}, W_{4} \in \Re$ such that
a) $\quad W_{1}|\varphi(0)| \leq V(t, \varphi) \leq W_{2}|\varphi(0)|$ where $V(t, \varphi)=$ $V_{1}(t, \varphi)+V_{2}(t, \varphi)$
b) $V\left(t_{k}, x+I_{k}\left(t_{k}, x\right)\right)-V\left(t_{k}{ }^{-}, x\right) \leq 0, k \in Z^{+}$
c) $a V_{1}^{\prime}\left(t, x_{t}\right)+b V_{2}^{\prime}\left(t, x_{t}\right) \leq$
$-\lambda(t) W_{3}(\inf \{|x(s)| ; t-h \leq s \leq t\})$
and $\quad p V^{\prime}{ }_{1}\left(t, x_{t}\right)+q V^{\prime}{ }_{2}\left(t, x_{t}\right)$ ≤ 0
Where $a^{2}+b^{2} \neq 0, p^{2}+q^{2} \neq 0$ and

$$
\lim _{S \rightarrow \infty} \int_{t}^{t+S} \lambda(s) d s=\infty \text { uniformly in } t \in R_{+}
$$

A. Suppose that there is a $\mu=\mu(\gamma)>0$ for each
$0<\gamma<H_{1}$ such that

$$
\begin{align*}
& p V_{1}^{\prime}\left(t, x_{t}\right)+q V_{2}^{\prime}\left(t, x_{t}\right) \\
& \leq-\mu V_{1}^{\prime}\left(t, x_{t}\right) \tag{3}
\end{align*}
$$

If $|x(t)| \geq \gamma$. If either (i) $a>0, b \geq 0$ or (ii)
$p \geq 0, q \geq 0$ hold, then the zero solution of (1)
is uniformly asymptotically stable.
B. The same is concluded if (3) is replaced by

$$
\begin{aligned}
& p V_{1}^{\prime}\left(t, x_{t}\right)+q V_{2}^{\prime} \\
& \leq \mu V_{1}^{\prime}\left(t, x_{t}\right)
\end{aligned}
$$

And if either (i) $a>0, b \geq 0$ or (ii) $p>0, q \geq 0$ hold

Proof

Uniform Stability can be proven as stability in Theorem 1.
Set $\eta=\delta\left(H_{2}\right)$ for a fixed $0<H_{2}<H_{1}$ and δ in the definition of uniform stability. For given $t_{0} \in R_{+}, \varphi \in C_{\eta}$, let $x(t)=x(t, \sigma, \varphi)$ be a solution of (1). Let $\varepsilon>0$ be given and take $\delta=\delta(\varepsilon)>0$ of uniform stability. Define $\delta_{1}=W_{2}^{-1}\left(\frac{W_{1}(\delta)}{2}\right)$. Choose a $S=S(\varepsilon)>0$ with

$$
\int_{t}^{t+S} \lambda(s) d s>2\left(|a| W_{2}\left(H_{2}\right)+|b| W_{3}\left(H_{2}\right)\right) / W_{4}\left(\delta_{1}\right)
$$

For $t \in R_{+}$and an integer $N=N(\varepsilon) \geq 1$ with $N \mu\left(\delta_{1}\right) W_{1}(\delta) / 2>2\left(|p| W_{2}\left(H_{2}\right)+|q| W_{3}\left(H_{2}\right)\right)$

E: ISSN No. 2349-9443

Define $\quad T=T(\varepsilon)=N(S+2 h)$. Suppose, for contradiction, that $\left\|x_{t}\right\| \geq \delta$ for $t_{0} \leq t \leq t_{0}+T$.
In Case (A), for $1 \leq i \leq N$, there is a $+(i-1)(S+2 h) \leq s_{i} \leq t_{0}+(i-1)(S+2 h)+h+S$ With $\left|x\left(s_{i}\right)\right|<\delta_{1}$. Otherwise $|x(t)| \geq \delta_{1}$ on this interval and, for $I_{i}=\left[t_{0}+(i-1)(S+2 h)+h, t_{0}+(i-1)(S+\right.$ $2 h+h+S, v 1 t=V 1(t, x t)$ and $v 2 t=V 2(t, x t)$, we have

$$
\begin{aligned}
& -2\left(|a| W_{2}\left(H_{2}\right)+|b| W_{3}\left(H_{2}\right)\right) \\
& \quad \leq a v_{1}\left(t_{0}+(i-1)(S+2 h)+h+S\right)+b v_{2}\left(t_{0}\right. \\
& \quad+(i-1)(S+2 h)+h+S) \\
& \left(-a v_{1}\left(t_{0}+(i-1)(S+2 h)+h\right)+b v_{2}\left(t_{0}+\right.\right. \\
& (i-1)(S+2 h)+h)) \\
& \leq-\int \lambda(t) W_{4}(\inf \{|x(s)|: t-h \leq s \leq t\}) d s \\
& \leq-W_{4}\left(\delta_{1}\right) \int \lambda(t)<-2\left(|a| W_{2}\left(H_{2}\right)+|b| W_{3}\left(H_{2}\right)\right)
\end{aligned}
$$

This inequality also holds true as per condition (ii)
a contradiction.
From the supposition, for $1 \leq i \leq N$, there is a $t_{0}+(i-1)(S+2 h)+h+S \leq T_{i} \leq t_{0}+i(S+2 h)$
Such that $\left|x\left(T_{i}\right)\right| \geq \delta$. Thus, there is an $s_{i}<t_{i}<T_{i}$ with
$\left|x\left(t_{i}\right)\right|=\delta_{1}$ and $|x(t)|>\delta_{1}$ for $t_{i}<t \leq T_{i}$. We obtain

$$
\begin{aligned}
& \quad p v_{1}\left(t_{0}+i(S+2 h)\right)+q v_{2}\left(t_{0}+i(S+2 h)\right) \\
& \\
& \quad-\left(p v_{1}\left(t_{0}+(i-1)(S+2 h)\right)\right. \\
& \left.\quad+q v_{2}\left(t_{0}+(i-1)(S+2 h)\right)\right) \\
& \leq p v_{1}\left(T_{i}\right)+q v_{2}\left(T_{i}\right)-\left(p v_{1}\left(t_{i}\right)+q v_{2}\left(t_{i}\right)\right) \\
& \leq-\mu\left(\delta_{1}\right)\left(v_{1}\left(T_{i}\right)-v_{1}\left(t_{i}\right)\right) \leq-\mu\left(\delta_{1}\right) W_{1}(\delta) / 2
\end{aligned}
$$

$-2\left(|p| W_{2}\left(H_{2}\right)+|q| W_{3}\left(H_{2}\right)\right) \leq p v_{1}\left(t_{0}+N(S+2 h)\right)+$
$q v_{2}\left(t_{0}+N(S+2 h)\right)-\left(p v_{1}\left(t_{0}\right)+q\left(v_{2}\left(t_{0}\right)\right)\right.$
$=\sum_{i=1}^{N}\left(p v_{1}\left(t_{0}+i(S+2 h)\right)+q v_{2}\left(t_{0}+i(S+2 h)\right)\right)-$ ($p v 1 t 0+i-1 S+2 h+q v 2 t 0+i-1 S+2 h$)
$\leq-N \mu\left(\delta_{1}\right) W_{1}(\delta) / 2<-2\left(|p| W_{2}\left(H_{2}\right)+|q| W_{3}\left(H_{2}\right)\right)$,
This inequality also holds true as per condition (ii) a contradiction.
In Case (B), we can take, for $1 \leq i \leq N, t_{0}+$ $(i-1)(2 h+S)+h \leq s_{i} \leq t_{0}+i(2 h+S)$ with $\left|x\left(s_{i}\right)\right|<$ $\delta_{1}, \quad t_{0}+(i-1)(2 h+S) \leq T_{i} \leq t_{0}+(i-1)(2 h+S)+$ h with $\left|x\left(T_{i}\right)\right| \geq \delta$ and $T_{i}<t_{i}<s_{i}$ with $\left|x\left(t_{i}\right)\right|=\delta_{1}$, $|x(t)|>\delta_{1}$ for $T_{i} \leq t<t_{i}$ so that

$$
\begin{aligned}
p v_{1}\left(t_{0}+i(S+2 h)\right) & +q v_{2}\left(t_{0}+i(S+2 h)\right) \\
& -\left(p v_{1}\left(t_{0}+(i-1)(S+2 h)\right)\right. \\
& \left.+q v_{2}\left(t_{0}+(i-1)(S+2 h)\right)\right)
\end{aligned}
$$

$$
\leq p v_{1}\left(t_{i}\right)+q v_{2}\left(t_{i}\right)-\left(p v_{1}\left(T_{i}\right)+q v_{2}\left(T_{i}\right)\right)
$$

$$
\leq \mu\left(\delta_{1}\right)\left(v_{1}\left(t_{i}\right)-v_{1}\left(T_{i}\right)\right) \leq-\mu\left(\delta_{1}\right) W_{1}(\delta) / 2
$$

This inequality also holds true as per condition (ii) a contradiction follows from this as in case(A)

Consequently $\left\|x_{t^{\prime}}\right\|<\delta$ for some $t_{0} \leq t^{\prime} \leq t_{0}+T$ and $|x(t)|<\varepsilon$ for $t \geq t_{0}+T$. This completes the proof.
Corollary
If there are $V_{1}, V_{2} \in v_{0}($.$) and W_{1}, W_{2}, W_{3}, W_{4} \in \Re$ satisfying
a) $\quad W_{1}|\varphi(0)| \leq V(t, \varphi) \leq W_{2}|\varphi(0)|$
b) $0 \leq V(t, \varphi) \leq W_{3}(\|\varphi\|)$ where $V(t, \varphi)=$ $V_{1}(t, \varphi)+V_{2}(t, \varphi)$
c) $V\left(t_{k}, x+I_{k}\left(t_{k}, x\right)\right)-V\left(t_{k}^{-}, x\right) \leq 0$
d) $V_{1}^{\prime}\left(t, x_{t}\right)+c_{1} V_{2}^{\prime}\left(t, x_{t}\right) \leq 0$
e) $\quad V_{1}^{\prime}\left(t, x_{t}\right)+c_{2} V_{2}^{\prime}\left(t, x_{t}\right) \leq$

$$
-\lambda(t) W_{4}(\inf \{|x(s)| ; t-h \leq s \leq t\})
$$

Where $c_{1} \neq c_{2}$ either $c_{1} \geq 0$ or $c_{2} \geq 0$ and $\lim _{S \rightarrow \infty} \int_{t}^{t+S} \lambda(s) d s=\infty$ uniformly in $t \in R_{+}$

Asian Resonance

Then the zero solution of (1) is uniformly asymptotically stable.
Proof
We may assume that $c_{1}>c_{2}$. Then $c_{1} \geq 0$, if
$c_{2}=0$

$$
V_{1}^{\prime}\left(t, x_{t}\right)+c_{1} V_{2}^{\prime}\left(t, x_{t}\right) \leq 0 \leq-V_{1}^{\prime}\left(t, x_{t}\right)
$$

And the conditions of theorem 2(A ii) are satisfied.
If $c_{1}>0$

$$
\begin{aligned}
V_{1}^{\prime}\left(t, x_{t}\right)+c_{1} V_{2}^{\prime}\left(t, x_{t}\right) & \leq\left(c_{1}-c_{2}\right) V_{2}^{\prime}\left(t, x_{t}\right) \\
& \leq-\left(\frac{\left(c_{1}-c_{2}\right)}{c_{1} \ldots}\right) V_{1}^{\prime}\left(t, x_{t}\right)
\end{aligned}
$$

Implies uniform stability by Theorem 2(A ii).
Example Consider the impulsive differential equation

$$
\begin{gathered}
x^{\prime}(t)=-a(t) f(x(t))+b(t) g(x(t-h)) \\
x\left(t_{k}\right)-x\left(t_{k}^{-}\right)=c_{k} x\left(t_{k}^{-}\right), \quad k \in Z^{+}
\end{gathered}
$$

Where $\quad a: R_{+} \rightarrow R_{+}, b: R_{+} \rightarrow R, f, g: R \rightarrow R \quad$ are continuous, $\quad x f(x)>0$, for $x \neq 0,|g(x)| \leq c|f(x)|$ for $c>0$ and $g(x) \neq 0$ for $x \neq 0, \quad\left|1+c_{k}\right| \leq 1, k \in Z^{+}$and $\sum_{k=1}^{\infty}\left[1-\left|1+c_{k}\right|\right]=\infty$
If $\int_{t}^{t+h}|b(s)| d s$ is bounded, $a(t)-\alpha c|b(t+h)| \geq 0$
For some $\alpha>1$, and for some $1 \leq \beta \leq \alpha, \lambda(t)=a(t)-$ $\beta c|b(t+h)|+(\beta-1)|b(t)|$ satisfies

$$
\lim _{s \rightarrow \infty} \int_{t}^{t+S} \lambda(s) d s=\infty
$$

Uniformly in $t \in R_{+}$, then the zero solution is uniformly asymptotically stable.

Proof

Let $V=V_{1}+V_{2} \quad$ where $\quad V_{1}(\mathrm{t}, \varphi)=|\varphi(0)|, \quad V_{2}(t, \varphi)=$ $\int_{-h}^{0}|b(t+s+h)| \mid g(\varphi(s) \mid d s$
Then $V_{2}(t, \varphi) \leq \int_{t}^{t+h}|b(s)| d s W_{3}(\|\varphi\|)$ for some function $W_{3} \in \Re$
And $\quad V_{1}\left(t_{k}, x+c_{k} x\right)-V_{1}\left(t_{k}{ }^{-}, x\right)=\left|\left(1+c_{k}\right) x\right|-|x|=$ $\left[1-\left|1+c_{k}\right|\right] V\left(t_{k}{ }^{-}, x\right)$
Let $\lambda_{\mathrm{k}}=1-\left|1+\mathrm{c}_{\mathrm{k}}\right|$; then $\sum_{\mathrm{k}=1}^{\infty} \lambda_{\mathrm{k}}=\infty$. We check that for any $\alpha>0$, there is a $\beta>0$ such that $V\left(t, x_{t}\right) \geq \alpha$ implies $V_{1}\left(t, x_{t}\right) \geq \beta$.
Otherwise we must have $\liminf _{\mathrm{t} \rightarrow \infty} \mathrm{V}_{1}\left(\mathrm{t}, \mathrm{x}_{\mathrm{t}}\right)=0$
We let $V(t)=V_{1}\left(t, x_{t}\right)+V_{2}\left(t, x_{t}\right)$
Then $\quad V\left(t_{k}\right)-V\left(t_{k}{ }^{-}\right)=V_{1}\left(\mathrm{t}_{\mathrm{k}}, \mathrm{x}\left(\mathrm{t}_{\mathrm{k}}{ }^{-}\right)+\mathrm{c}_{\mathrm{k}} \mathrm{x}\left(\mathrm{t}_{\mathrm{k}}{ }^{-}\right)\right)-$
$\mathrm{V}_{1}\left(\mathrm{t}_{\mathrm{k}}{ }^{-}, \mathrm{x}\left(\mathrm{t}_{\mathrm{k}}{ }^{-}\right)\right) \leq 0$

$$
v_{1}^{\prime}\left(t, x_{t}\right)+\beta v_{2}^{\prime}\left(t, x_{t}\right)
$$

$$
\leq-(\mathrm{a}(\mathrm{t})-\beta \mathrm{c}|\mathrm{~b}(\mathrm{t}+\mathrm{h})|)|\mathrm{f}(\mathrm{x}(\mathrm{t}))|
$$

$$
-(\beta-1)|b(t)||g(x(t-h))|
$$

$$
+\sum_{0 \leq t_{\mathrm{k}} \leq \mathrm{t}} \mathrm{~V}\left(\mathrm{t}_{\mathrm{k}}\right)-\mathrm{V}\left(\mathrm{t}_{\mathrm{k}}^{-}\right)
$$

$$
\leq-\lambda(t) W_{4}(\inf \{|x(s)|: t-h \leq s \leq t\})
$$

If $\left\|\mathrm{x}_{\mathrm{t}}\right\| \leq \mathrm{H}$ for a fixed $0<H<\infty$ and some function W_{4}.
If $\beta=1$, for $\alpha \neq 1 \quad V_{1}^{\prime}\left(t, x_{t}\right)+\alpha V_{2}^{\prime}\left(t, x_{t}\right) \leq 0$
If $\beta>1 \quad V_{1}^{\prime}\left(t, x_{t}\right)+1 V_{2}^{\prime}\left(t, x_{t}\right) \leq 0$
The conditions of the corollary are satisfied and hence the zero solution is uniformly asymptotically stable.

References

1. D.D. Bainov, P.S. Simeonov, Systems with Impulse Effect: Stability Theory and Applications, Horwood, Chicestar, 1989.
2. V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulse Differential Equations, World Scientific, Singapore 1989.

E: ISSN No. 2349-9443
3. J. Shen, Z. Luo, Impulsive stabilization of functional differential equations via Liapunov functionals, J. Math. Anal.Appl. 240 (1999) 1-15.
4. Katsumasa Kobayashi, Stability Theorems for Functional Differential Equations, Nonlinear Analysis, Theory. Methods \& Applicorions, Vol. 20, No. 10, pp. 1183-I 192, 1993.
5. Burton T. \& Hatvani L., Stability theorems for nonautonomous functional differential equations by

Asian Resonance
Liapunov functionals, Tokoku math. J. 41, 65-104 (1989).
6. Lakshmikantham V., Leela S. \& Sivasundaram S., Lyapunov functions on product spaces and stability theory of delay differential equations, J. math. Analysis Applic. 154, 391-402 (1991).
7. L. Hatvani, On the asymptotic stability for nonautonomous functional differential equations by Liapunov functionals, Trans. Amer. Math. Soc. 354 (2002) 3555-3571.

